

Outline

- Objective
- Key Concepts
- Case Histories
 - Vaiont, Italy
 - Quake Lake, MT
 - Costilla Dam, New Mexico
 - St. Francis Dam

Objective - Develop familiarity with landslides and their impact on structures, rivers or reservoirs

Key Concepts

- There are direct and indirect impacts
- Always look beyond the footprint of the facility (Vaiont, Quake Lake)
- Many dams in mountainous terrain where landslides are common
- Landslides can be triggered by
 - Hydrologic hazards (heavy rainfall, snowmelt)
 - Operations (e.g. reservoir drawdown)
 - Seismic hazards (Large earthquake, fault offset)

Key Concepts (Cont.)

Landslide related PFM's

- Upstream rapid failure into reservoir can create overtopping
- Downstream river blockage affects dam access/monitoring and releases
- Dam site abutment landslide can lower crest, create cracking and scour/concentrated leak erosion (embankment), or concrete deformation and cracking
- Dam site spillway blockage hinders reservoir-release operations

Vaiont Dam, Italy

- 870' high arch dam on Vaiont River near Longarone, Italy
- Completed in 1960
- The foundation and reservoir slopes composed of bedded limestone
- Left bank slide mass from postglacial period

Vaiont Dam (Overtopping Wave)

From Hendron and Patton

- A part of the mountain side slid into the reservoir on Oct. 9,1963
- Filled the entire reservoir for a mile upstream of the dam creating huge wave
- Sliding occurred on clayfilled bedding planes with phi = 10 to 12° with dip of 35°+/- to 0°
- Approx. 250 million yd³

Vaiont Dam

Slide sent wall of water 330' high over the top of the dam downstream (dam survived)

2600 fatalities in the village of Longarone downstream

Vaiont Dam

- Definitive study by Hendron and Patton, 1985 (COE)
- Occurred on old slide
- Moved on clay layers (φ ~ 12°)

Vaiont Dam

- Karstic terrain groundwater system
- What effect does this have on the landslide mass?

Vaiont Dam Landslide

From Hendron and Patton

Combination high reservoir and high rainfall caused slide

Vaiont Dam 3-D

Res (m)	Rain	F.S.
710	High	1.00
710	Low	1.10
650	High	1.08
650	Low	1.18
None	High	1.12
None	Low	1.21

Displacement and Reservoir Level vs Time

Figure Q: Displacement-time data for Vaiont showing relationship with reservoir level (Data modified from Hendron and Patton, 1985).

Key Landslide Characteristics

- Important to understand
 - Rainfall data
 - Reservoir operations
 - Groundwater conditions
 - Geology (including 3-D effects)
 - Geometry and failure mechanism
 - Slide characteristics (slide mass, rupture surface and lateral margins)
 - Slide history (first time or reactivated)
 - Movement surveys and rates of movement
 - Limit equilibrium (including reliability analyses or other analyses)

Quake Lake Landslide

- Triggered by August 17, 1959 Hebgen Lake E.Q.
- M7.5-7.8 in SW part of Yellowstone Park
- 43,000,000 c.y. slid across canyon and up opposite side nearly 400'
- 27 fatalities in campground on opposite side of river

The Quake

- Magnitude 7.5
- Max Intensity X
- Lasted 30-40 secs
- Up to 20 feet vert.
 offset
- Epicenter
- Dam ★
- Quake Lake

Quake Lake Landslide

- Buttress of jointed dolomite collapsed
- Sliding occurred along 50° foliation toward canyon

Slide Mass Immediately Afterward

Quake Lake Landslide (D/S of a dam)

- Landslide debris dam 4,000' long and 200' high across Madison River d/s Hebgen Dam formed "Quake Lake" leakage to ~ 200 cfs
- Hebgen Lake nearly full at the time and dam was damaged by earthquake (inspection desirable)
- Volume in Hebgen Lake nearly 4 times that which could be accommodated in Quake Lake
- In time allowed, spillway notch 250' wide cut through slide with capacity of 10,000 cfs
- Simultaneous armoring with 2-3' rock

Final Solution

- Consulting Board hired, including A. Casagrande
- Need to lower crest to reduce gradient and pool
- Spillway channel later lowered 50 ft reducing Quake Lake from 81,000 to 35,000 acre-ft
- Used flowing water to aid with excavation – erosion got away from them – dumped rock to redirect flow

Other Landslides Upon Which Dams are Founded

Rockfalls Can Also Be Damaging

Equations for Quick Estimates

- Displacements during earthquake shaking
 - Jibson (2007) based on yield acceleration and magnitude
 - Kramer et al (1997) Modified Newmark Model for Seismic Displacements
- Wave heights generated by landslides moving into reservoirs
 - Pugh and Chang (1986) block slides based on Morrow Point
 - Huber and Hager (1997) debris slides
 - Perez (2006)

Example Event Tree

Takeaway Points

- Landslides occurring upstream (reservoir waves, inundating operating structures, landslide dams), beneath (distress, cracking, sliding in foundation), or downstream (landslide dams) of a dam can cause dam safety issues
- Landslides can also cause problems with dam operations
- Understanding, assessing and monitoring landslides that are likely to move is prudent

Added References

- "Landslides Investigation and Mitigation" Special Report 247 Transportation Research Board, National Research Council
- "Landslide Dams: Processes, Risk and Mitigation" Edited by Robert L. Schuster
- "Landslides Analysis and Control" Special Report 176 Transportation Research Board, National Academy of Sciences
- "Report on the Analysis of Rapid" Natural Rock Slope Failures" and "Report on the Analysis of Slow, very slow and Extremely Slow Natural Slides" both by Glastonbury and Fell

